Congestive Heart Failure Michael Peppers, Pharm.D. Clinical Pharmacist

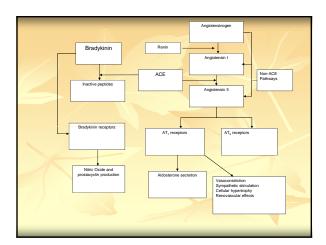
Congestive Heart Failure • Epidemiology • Concepts in Pathology/Prevention • Drug therapy

Epidemiology

- 5 million patients nationwide
- 550,000 newly dx'd each year
- 12 to 15 million office visits/year
- 6.5 million hospital days/year
- 10 patients per 1000 population
- Condition of the elderly: 80 percent of those hospitalized with HF are over 65 years old
- Most common DRG
- Over 28 billion in cost USA

Pathophysiology of Heart failure

- Etiology
 - Volume overload (Valve Regurgitation)
 - Pressure overload (HTN)
 - Loss of myocytes (AMI)
 - Infections (viral, rickettsia, bacterial, fungal,


Pathophysiology of Heart failure

- A variety of changes take place that, in the short term, help maintain cardiac output in the face of reduced pump function
 - Chamber Dilation
 - Cardiac Hypertrophy
 - Sympathetic Nervous System (SNS) Discharge
 - Renin-Angiotensin-Aldosterone System (RAAS) Activation

Pathophysiology of Heart Failure

- SNS activation occurs due to reduced blood pressure
 - Contractility is increased initially
 - Sympathetic overstimulation results in cardiac remodeling and makes the heart prone to developing arrhythmias

Pathophysiology of Heart Failure

- Activation of the RAAS occurs in heart failure because of:
 - Reduced cardiac output
 - SNS activation
 - Reduced renal perfusion

Pathophysiology of Heart Failure

- Initially the system helps maintain cardiac output by
 - Promoting Na⁺ and water retention
 - Increasing thirst
 - Activating the Sympathetic Nervous System
 - Stimulating vasopressin release
 - Constricting blood vessels

Pathophysiology of Heart Failure

- Renin Angiotensin Aaldosteron System eventually promotes myocardial dysfunction by:
 - Increasing preload and afterload
 - Ang-II and aldosterone promote cardiac remodeling

Pathophysiology of Heart Failure

- Natriuretic Peptide System
 - Consists of three types of peptides
 - ANP secreted from atria in response to increased wall tension
 - BNP secreted by the ventricle in response to increased wall tension
 - CNP secreted by blood vessels and acts locally to promote vasodilation
 - ANP and BNP are physiologic antagonists to Ang II.

		•

Drugs Tx That Does Not Decrease Mortality Long Term in CHF

Most Diuretics

- Lasix (furosemide) Demadex (torsemide)
- Bumex (bumetanide)
 Dyazide, Maxzide (HCTZ)
 Chlorthalidone

Digoxin (does decrease readmit)

LanoxinDigitek

Inotropes

- Dobutrex (dobutamine)
 Primacor (milrinone)
 Inocor (inamrinone)
 Dopamine

Calcium channel blockers

- Norvasc (amlodipine)
- Cardizem, Cartia (diltiazem)
- Calan, Isoptin, Covera (verapamil)

Alpha blockers

- Minipress (prazosin)
 Hytrin (terazosin)
 Cardura (doxazosin)

Treatment That Does Decrease Mortality Long Term in CHF

- Toprol XL (metoprolol)
- Coreg (carvedilol)
- Zebeta (bisoprolol)

ACEIs

- Vasotec (enalapril)
- Capoten (captopril)
- Zestril (lisinopril)
- Prinivil (lisinopril)
- Accupril (quinapril)

Aldosterone Antagonists

- Aldactone (spironolactone)
- Inspra (eplenerone)

Hydralazine / Nitro Combo

- Apresoline (hydralazine)
- Imdur (isosorbide)
- Ismo (isosorbide)

Beta Blocker Mechanisms

- Not clearly understood
- Protects against cardiotoxic effects of catecholamines (norepinephrine)
- Up regulation of Beta-1 receptors to improve myocardial response
- Decreases HR, Increases coronary blood flow, improves myocardial perfusion
- Corrects abnormal calcium deposits
- Antioxidant
- Protects against circulating autoantibodies
- Reverses/Prevents remodeling and programmed cellular death
- Increases C.I. / ejection fraction
- Decreases Pulmonary Capillary Wedge Pressure

Beta Blocker Benefits

- **Effective in Mild to Severe CHF**
- Improves:
 - New York Heart Association Class of CHF
 - Cardiac Output/Index
 - Left ventricular ejection fraction
 - HR, exercise tolerance, quality of life
- Decreases:
 - Mortality 20-65%
 - Hospitalization 23-32%
 - Progression of CHF
 - Need for Heart Transplant

Beta Blocker Key Issues

- Start Low & Titrate Upward Over Weeks
- May feel tired for up to 6 weeks while titrating to final dose
- Takes 3 full months of therapy to begin seeing the positive benefits
- Using a combination beta/alpha blocker may decrease the negative effects early in therapy by decreasing afterload (Coreg)
- Inform patients that this is a long-term treatment strategy to truly increase their life span

ACE Inhibitors

- ACEIs and ARBs
 - Captopril, enalapril, ramipril, lisinopril, quinapril and fosinopril are FDA approved for treatment of CHF.
 - Mechanism:
 - Reduce preload and afterload
 - Prevent Ang II and aldosterone mediated cardiac remodeling
 - ACEIs block bradykinin breakdown, which causes vasodilation
 - Recommended for all stable CHF patients
 - Start with a low dose and titrate
 - ARBs are not yet FDA approved for CHF treatment

ACE Inhibitor Benefits

- Decreases:
 - Overall Mortality by 50 %
 - Re-Hospitalization Rate
 - Myocardial Stress via Decreased Afterload
 - Remodeling of the heart
 - Ischemic episodes
 - **Thrombogenic / Fibrinolytic effects**
 - Net sodium loss when combined with diuretic
 - Exercise tolerability
 - Survival by 50 %

Hydralazine + Nitrate

- Reduces CHF related mortality compared to placebo but to a lesser degree than ACEIs.
- Mechanism
 - Reduce preload and afterload, relieving cardiac stress.
 - ✓ Increase renal blood flow
- Used in patients intolerant to or in combination with ACEIs
- Start at a low dose and titrate to avoid SEs such as hypotension and headaches

Diuretic Benefits

- Minimize Sodium and Water Reabsorption
- Decrease Intravascular Fluid
- Lessens symptomatic effects of CHF
 - Pulmonary edema
 - Peripheral edema
- Assists with the action of ACE-Inhibitors

Aldosterone Antagonists

- Spironolactone and Eplerenone
 - Mechanism
 - Block aldosterone mediated cardiac remodeling
 - Promote Na+ and H2O excretion
 - Should these drugs be used with ACEIs?
 - Eplerenone should be used in patients intolerant of the metabolic side effects of spironolactone
 - gynecomastia

Spironolactone Benefits

- Potassium sparring diuretic (Aldactone)
- Mechanism
 - Blocks aldosterone receptors at level of the kidney to decreases intravascular fluid load
 - Block aldosterone mediated cardiac remodeling
 - Promote Na+ and H2O excretion
 - Anti-Fibrotic (decreases myocardial fibrosis)
 - Toxic free oxygen radical scavengers
 - Blocks some of the vasoconstrictive effects of aldosterone
 - Should these drugs be used with ACEIs?
- Decreases mortality 30 % and decreases hospitalization 35 %

Digoxin Benefits

- Decreases overall re-hospitalizations
- Improves force of contraction
- Decreases Symptoms, Increases Exercise Tolerance, Increases Quality of Life
- Low dose for > 70 yrs (0.125 mg daily)
- Higher dose for < 70 yrs (0.25 mg dialy)

Nesiritide

- Recombinant hBNP
- Used for patients with decompensated CHF and dyspnea
- Mechanism
 - Reduces preload and afterload
 - Promotes Na+ and H2O excretion
 - Reduces PCWP and relieves dyspnea
- Should only be used for 48 consecutive hours.

DONE	
Thanks	